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Abstract 
The successful implementation of machine 
learning in autonomous rover traverse science 
requires addressing challenges that range from 
the analytical technical realm, to the fuzzy, 
philosophical domain of entrenched belief 
systems within scientists and mission managers. 
 
These challenges are many. They include helping 
scientists understand the benefits and risks of 
using machine learning onboard and guiding 
them to distill and translate science goals into 
clear tasks that can be accomplished by 
algorithms.  The technical challenges include, 
among other things, developing robust 
verification and validation plans.  The ultimate 
test of onboard machine learning acceptance is if 
it flies and is executed onboard and delivers 
successful results during the mission.  This last 
hurdle can be overcome by developing an 
implementation plan that poses an acceptable 
risk vs. reward scenario for mission managers. 
 
 We are working on rover traverse science 
applications that address each of these issues.  In 
this paper we will describe what we are doing 
and how we approach these challenges. 

1.  Introduction 

There are two fundamental constraints driving the 
need for using machine learning to perform onboard 
science data analysis. The first constraint is the 
spacecraft’s limited downlink bandwidth and the 
second is the communication time delay between 
Earth and the spacecraft.   

Many spacecraft platforms will benefit from an 
onboard, machine learning capability.  Our work 
focuses on providing this capability to a mobile rover 
on the surface of Mars. We are demonstrating and 
validating our technology using data from field test 

rovers such as the FIDO (Field Integrated Design and 
Operations) rover, as shown in Figure 1. 

As rovers continue to increase the distance they 
travel during a traverse, the importance of performing 
science data analysis onboard greatly multiplies. As 
the downlink bandwidth capability shrinks in 
comparison to the vast amount of terrain data 
gathered by the rover, the ability to summarize, 
highlight and prioritize the data becomes more and 
more valuable. The rover must now intelligently 
select what data to transmit back to Earth. We will 
discuss how recently developed machine learning 
prioritization techniques address this challenge. 

Opportunistic science, another application enabled by 
onboard machine learning, will address not only the 
downlink bandwidth constraint – but also that of the 
communication delay.   The capability of 
opportunistic science enables a rover to perform data 
collects, which were not originally planned, when an 
interesting science target is encountered - without 
having to wait for a command from Earth.   

Figure 1.   FIDO rover in August 2002 field 
test in Arizona.  We have tested our algorithms 
on image data from this field test. 



 

 

The goal of onboard science analysis is to increase 
mission science return.  The keys to achieving this 
objective are threefold.  We must first identify a 
metric of increased science return that the scientists 
will support.  We then have to develop algorithms 
that achieve this increase in science return.  Finally, 
we formulate a plan to integrate the technology into 
the mission at a risk level acceptable to the project 
manager and project scientist. 

2.  Getting Scientists Onboard 

Onboard data analysis will be impossible to fly 
without the backing of the scientific community.  In 
order to gain their support, we must understand their 
point of view.  In general, scientists want control over 
what data is collected.  They also want the return of 
all the raw data collected.  The motivation for this 
mindset is that they feel they are best qualified to 
make data gathering decisions to maximize science 
return.  Furthermore, they contend that any pre-
processing of the data may result in a loss of crucial 
scientific information. 

This mode of operation works well under limited 
operating conditions, such as constraining rover 
targets to be within the region defined by the most 
recent images sent back to Earth. NASA envisages 
future rovers with the ability to move beyond this 
localized region.  This capability will force scientists 
to undergo a paradigm shift with respect to their data 
gathering strategies. 

In these new missions, scientists will no longer be 
able to “see” all of the terrain the rover will traverse. 
In addition, these new missions will have instruments 
with data gathering abilities that far exceed the 
allocated downlink bandwidth for the mission.  Thus, 
much more data can be collected than can be sent 
back to the researchers on Earth.  As a result, the 
scientist will soon be forced to decide what data to 
collect and return without prior visual surface 
information of an area.  The scientist’s data gathering 
options include: taking no science data during the 
traverse; collecting data at a fixed time interval, or 
fixed distance interval; or allowing the rover to make 
intelligent decisions about what data to gather and 
transmit.  

As a prerequisite to selecting option three (the rover 
making its own data gathering and data transmittal 
decisions), we hope to convince scientists that the 
onboard science capabilities will yield more science 
return than the other predefined options.  We are 
approaching this from several directions such as 
verification and validation using data from current or 
past missions and interacting with scientists at all 
stages of development and testing.  We will outline 

these interactions beginning with system 
development. 

Working with scientists, JPL’s Onboard Autonomous 
Science Investigation System (OASIS) team has 
identified three classes of data evaluation criteria 
(Castaño et. al 2003).  Researchers are interested in 
identifying the existence of certain pre-specified 
signals of scientific interest.   The second criterion is 
the identification of unexpected, or anomalous, 
features, as these can lead to new scientific 
discoveries.  Finally researchers want to capture a 
description of the typical characteristics of a region.  
In the next section, we present our approaches to 
each of these prioritization criteria. 

3.  Automated Rover Traverse Science 
Application 

The onboard rover traverse science data analysis system 
for data prioritization and opportunistic science must be 
able to identify indicators of scientifically significant 
information.  This involves extracting features from the 
collected data and then evaluating the data based on the 
extracted features.  Here we describe the features upon 
which we are initially focusing, the methods for 
prioritization, and our approach for both verifying that the 
algorithms are accurate and validating that the 
performance of the algorithms is acceptable to scientists.   

3.1  Feature Extraction 

The first step in onboard analysis is to extract features that 
can be used to assess the scientific value of the data.   We 
have initially concentrated on the geology and, more 
specifically, on the rocks in a scene.  Intuitively, this 
makes sense, as rocks are a predominate feature on the 
surface of Mars, and can thus provide valuable insights 
into the geological processes involved in forming the 
existing landscape.   

There have been several approaches to locating rocks in 
images, including that of Gulick et al. [Gulick, et a.l, 
1999]. Our approach begins by locating rocks in a stereo 
image pair. To find the rocks, the stereo range 
information, already calculated for navigation purposes, is 
transformed to produce a height image.  In the height 
image, the value of each pixel represents the elevation of 
the point above the ground plane of the scene (rather than 
the distance from the point to the camera, as in the range 
image, or the brightness of the point in the scene, as in the 
original grayscale image).  Level contours in the height 
image are then calculated and these contours are 
connected, from the peaks to the ground, to identify the 
rocks [Gor, et al., 2001].  Rock properties including 
albedo, visual texture and shape [Fox, et al, 2002] are 
then extracted from the rocks identified.   



 

 

We measure albedo, which indicates the reflectance 
properties of a surface, by computing the average gray-
scale value of the pixels that comprise the image of the 
rock.  Visual texture can be described by intensity 
variations at different orientations and spatial frequencies 
within the image [Gilmore, et al., 2000].  We measure 
texture using a filter bank in which each filter is tuned to a 
different combination of orientation and spatial frequency 
[Castano, et al, 1999]. 

3.2  Image Prioritization 

The features extracted from a group of images are then 
used to rank the images using the three distinct 
prioritization algorithms described in this section.   
 
3.2.1   KEY TARGET SIGNATURE 

Scientists have studied landing areas extensively and have 
an idea of what they expect to see or encounter during an 
in situ mission.  On a mission, the instruments have all 
been carefully selected to collect information that will 
provide valuable insight into the history of, or current 
conditions on, the planet.  Examples of what they are 
looking for include any signs of life, past or present, and 
any signs of water, past or present.  The presence of 
carbonate minerals is a specific example of what would 
be a key discovery.  Thus, when only limited data can be 
sent to Earth, it is very important to scientists that any 
data containing key signatures indicating significant 
scientific discoveries is among the data that is returned.  
We specify the target signature for a rock of interest as a 
feature vector whose values are provided by the scientists.  
Rocks are prioritized as a function of the distance of their 
extracted feature vector from the specified weighted 
feature vector.   

3.2.2  NOVELTY DETECTION  
Often, scientific discoveries are made not by identifying a 
sought after signature, but as a result of encountering a 
novel, unexpected signature that is not readily explained 
using current models.  Following this approach, images 
with interesting features, such as rocks with unusual 
shapes or textures, should be ranked higher than images 
without distinctive features.   
 
We have developed three methods for detecting and 
prioritizing novel rocks, representing the three dominant 
flavors of machine learning approaches to novelty 
detection:  distance-based, probability-based (i.e. 
"generative"), and discriminative.  These methods for 
novelty detection are applicable to a variety of novelty 
detection tasks, but are specifically designed with onboard 
constraints and large candidate feature spaces in mind.    

3.2.3  REPRESENTATIVE SAMPLING 
One of the objectives for rover traverse science is to gain 
an understanding of the region being traversed.  As such, 

we want to have information on representative rocks, not 
just potentially very interesting unusual rocks, returned to 
Earth.  A region is likely populated by several types of 
rocks with each type having a different abundance.   A 
uniform sampling will be biased towards the dominant 
class of rock present and may result in smaller classes not 
being represented at all in the downlinked data. 
 
In our representative sampling algorithm, the rocks are 
clustered into groups based on their feature vectors using 
K-means.  The science team pre-assigns a weighting, or 
importance value, to each property (shape, albedo, 
texture) in the feature vector.  Different weight 
assignments can be used to emphasize the properties of 
highest interest.  For example, albedo and texture are 
typically used to distinguish types of rocks, but rock size 
may be used if sorting is of interest. For example, rocks 
that have been subjected to a geologic process such as 
flooding may be sorted over a surface area according to 
their size. The presence of such sorting provides 
information about the processes that may have occurred.  
The data is then prioritized to ensure that representative 
rocks from each class are sampled.   

Now that all three prioritization techniques have been 
described, we will now discuss how we are verifying and 
validating these algorithms. 

3.3  Performance Verification 

Performance verification involves ensuring that the 
algorithm implementation is working correctly under the 
specified operating conditions.  This can be segmented 
into two separate considerations. The implementation 
must first correctly execute the specified algorithm, i.e. no 
bugs, and then the algorithm must perform the desired 
operations under claimed circumstances.   

For the onboard science application, each stage is verified 
independently, i.e. rocks correctly identified, features 
correctly extracted, and prioritizations performed 
correctly for given feature vector sets.  The first two of 
these, rock identification and feature extraction, are 
affected by data sampling conditions which may alter data 
values in ways that are independent of the properties of 
the scene.  An obvious example is that lighting conditions 
will affect the albedo measurement of a rock, leading to 
misleading conclusions if no corrections are made.   We 
are testing the algorithms on a number of relevant 
sources, including rovers collecting data in the JPL Mars 
Yard, rovers collecting data in the field, hand-held 
instrument measurements under varying conditions, Mars 
Pathfinder Mission data, and, when it becomes available, 
Mars Exploration Rover (MER) Mission data.  At this 
point, we limit claims about the variability of operating 
conditions under which consistent results will be 
acquired, but these factors, such as lighting compensation 
are under consideration. 



 

 

For given feature values, it is straightforward to verify 
that the prioritization algorithms correctly sort the lists of 
rocks and images according to the specified priority 
metric.  This can be tested by using actual feature values 
and by conducting extensive testing using synthetic 
features. However, the overall goal of onboard 
prioritization is to ensure that the automated prioritization 
results correspond to a prioritization similar to that which 
the scientists would assign for the same data.  
Demonstrating that this objective is met falls within the 
realm of validation.  

3.4  Performance Validation 

One of our primary concerns in this project is to develop 
techniques for validating the results of our autonomous 
prioritization algorithms.  In particular, we would like 
quantitative measurements so that we can gauge how 
closely our algorithms match the priorities of experts.  
Discrepancies can arise at multiple stages of the analysis 
process.  First, the features extracted may not be 
informative for the scene properties that scientists 
consider important.  Second, if the algorithms for 
extracting and prioritizing the features do not correspond 
well with the actual properties of the scene, the resulting 
prioritization will not match well with scientists 
evaluations. 

We have approached the problem of characterizing what 
the scientists consider interesting by involving scientists 
early in the algorithm design and development processes.  
We validated the design by comparing the results of 
prioritizing data using our algorithms to scientists’ 
prioritizations of the same data.  After collecting 
information from the experts, statistical methods were 
used for the following: to combine the results from a 
number of experts, to compare consistency across the 
experts, and to compare their results with the 
prioritizations produced by our algorithms. We compared 
rankings using the Spearman rank coefficient [Lehmann, 
1975], which yields a correlation coefficient between two 
rankings and thus provides a quantitative similarity 
measure.  Our analysis indicated that scientists tend to 
group the image data set into several classes.   There was 
consistent agreement on the order of importance of each 
of the classes.  Within classes, the agreement varied from 
very little in the least important class to very high 
agreement in a class in which images were unique.  It was 
also clear that the scientists do not usually prioritize data 
based on the general question “Which image provides the 
most science information?”  For example, a scientist may 
be studying the sedimentology of an area.  To approach 
the automated analysis in this way, each of the possible 
scientific questions needs to be identified, and techniques 
for extracting and ranking the relevant information would 
then need development. 

4.  Technology Integration Plan 

With a science analysis application that is operating 
within onboard resource requirements1 and supported 
by the scientists, one final challenge remains: to 
convince mission managers to fly the software.  
There are several stages of mission development that 
machine learning applications can be introduced.   
One of the optimal times is during early mission 
planning stages.  This works well if the machine 
learning techniques will provide a capability that is 
considered an enabling technology needed for the 
mission to achieve its objectives.  One of the keys to 
this approach is to make mission designers aware of 
the new machine learning capability early on in the 
design process.  Early integration can provide new 
design options, capabilities and cost savings that can 
increase the overall acquisition of mission science. 

A second possible stage of introducing the new 
machine learning capability is during mission 
development.  This is significantly more difficult 
because the mission will almost always be struggling 
to maintain time and budget schedules.  They would 
be more likely to descope some of the mission 
functionality than to add a new capability that may 
solve some of the problems they are encountering. 

Once the mission is flying, and assuming that the 
spacecraft is operating well, there is a great 
reluctance to change anything.  This is where a tiered 
approach to introducing autonomous machine 
learning algorithms into missions can be initiated.  A 
tiered approach consists of incremental 
demonstrations and integration of the technology into 
the missions.  This approach may begin with a 
completely non-intrusive, no-risk, ground 
demonstration and can culminate with a full 
demonstration of the technology onboard.  The 
mission managers must first be convinced of some 
quantified benefit to their mission or to future 
missions.  The technology provider’s desire to 
demonstrate their technology is not a motivation for 
the mission manager.  The technology provider must 
demonstrate a benefit to the mission itself, such as 
new science enabled by the technology or the 
possibility of making a greater number of scientific 
discoveries.   

For the rover traverse science application, we have 
identified several steps to integrate the technology.  
The first step is to demonstrate the operational 
capability of the software.  This will be done with 
data returned to Earth from the rover, beginning with 
Mars Exploration Rover (MER) Mission data.  In this 
case, the data sent to Earth will be analyzed for 

————— 
1 An issue we do not discuss in this paper. 



 

 

interesting features and then prioritized to show 
which features and images are given the highest 
priority by the algorithms.  These results are then 
shown to the scientists to validate desired 
performance.  Our next step is to shadow operations 
on the ground by demonstrating the technology under 
flight conditions, that is, with the same raw data and 
telemetry information available onboard the rover 
itself.  Introduction of the onboard traverse science 
capability in increasing levels of autonomy would 
begin during an extended mission phase and would 
initially perform shadow operations onboard.  

The OASIS rover traverse science system has a 
multi-leveled functionality that involves increasing 
levels of autonomy.  In the most basic configuration, 
data collected for navigation is analyzed and 
prioritized.  Thus, the rover takes no additional data.  
The results downloaded for this operation can be 
either the highest ranked set of image data, and/or a 
data summary table.  For example, if only five 
images for the traverse can be downloaded, the five 
images that the algorithms have tagged as having the 
highest priority would be selected, rather than using 
another selection mechanism.  This mode does not 
involve any bits of additional download.  With a few 
additional bits, a summary table of the terrain 
traversed, including a table of rocks and their 
properties, can be downloaded.  This table provides a 
very condensed, computationally inexpensive 
summary of the region.   

Our next level of functionality is to provide the rover 
with the capability of stopping when a key signature 
is detected.   Scientists pre-define these key target 
signatures on Earth and then upload them to the 
rover.  The rover will stop when a signature 
indicating an extremely important scientific feature is 
identified with high confidence.   

At a slightly higher level of autonomy, if an 
interesting or highly novel feature is identified, it 
may not be of sufficient significance to halt all 
further planned operations for the day, but it may be 
desirable to take additional measurements such as 
with a color camera or spectrometer.  These can then 
be downloaded at the next communication 
opportunity.  Increasing the autonomy level still 
further, we could allow the system to command the 
rover to slightly deviate from its planned path to get 
an additional measurement at a new viewpoint of, or 
closer to, the interesting target.  Finally, the highest 
level of autonomy would involve the rover actually 
deciding to take a contact measurement of an 
interesting target. 

Another approach to gaining acceptance of machine 
learning onboard is to first demonstrate the capability 
in a limited capacity as an experiment onboard a 
spacecraft.   Opportunities can arise when a 

spacecraft is no longer able to perform its original 
mission, as with the Wide-field Infrared Explorer 
(WIRE) spacecraft which lost the coolant to its 
instrument shortly after launch.  Although the 
instrument could not be used, the rest of the 
spacecraft including the startracker remained 
operational.  Researchers had the chance to propose 
new uses of the spacecraft such as demonstration of 
new technologies.  Also, student-lead projects such as 
those in the University Nanosat Program can be a 
forum for technology demonstration.  Often these 
universities welcome the opportunity to put 
additional capabilities on their spacecraft, although 
the spacecraft may have extremely limited resources. 
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